• UNDERSTAND

    Geochemical Processes

  • UNDERSTAND

    Earth History

  • UNDERSTAND

    Economic Geology

Geosciences

The reading of Earth history satisfies a fundamental human urge to know how the world around us came to be. Throughout its 4.6 billion year history the Earth has undergone enormous transformation and stable isotope analysis has been at the forefront of developing our knowledge of these transformative processes. By understanding the macro and micro cycling mechanisms of the light stable isotopes through the lithosphere by natural processes the Earth history is continually being understood in ever more detail.

Paleoclimate

One of the earliest applications of light stable isotope mass spectrometry was the reconstruction of ancient climate based on the oxygen isotopic composition (δ18O) of preserved ancient marine carbonate, and continues to be one of the widely utilised methods for interrogating Earth’s climate history. This paleothermometer is based on the fundamental principle that the fractionation of oxygen isotopes into calcite is temperature dependent. The isoprime precisION with Dual Inlet and MultiCarb enables very precise and reliable automated measurement of carbonates, ideal for generating high-resolution paleo temperature records.

Cosmology

The sulfur isotope analysis of extra-terrestrial sulphide minerals, e.g. from meteorites, has provided a variety of insights into the origins of the Earth and the solar system. The isotopic composition of meteoritic sulfur (Canyon Diabolo triolite) was also used as a the original reference point for the bulk earth from which to evaluate global scale fractionations in the sulfur cycle. Sulfur-bearing minerals are easily analysed with our range of elemental analyser (EA-IRMS) systems, which utilise advanced purge and trap (APT) technology for unbeatable separation and peak focussing of SO2, ensuring perfect resolution and unparalleled sensitivity for mineral sulfur analysis. 

Stratigraphy

Fluctuations in δ13C through geological time are brought about by changes in the balance of fluxes of the carbon cycle.  Because the residence time in the carbon cycle is brief (10 ka), changes in flux are recorded accurately and globally in the sedimentary record. As such, occasional spikes in the global δ13C are useful as stratigraphic markers for chemostratigraphy, especially during the Paleozoic. The iso FLOW uses our novel UltiTrap technology to enable precise, high throughput continuous flow analysis of bulk carbonates to identify these isotope excursions.

Geoscientific publications using our instruments

Our customers use our instruments to do some amazing research in the geosciences. To show you how they perform their research and how they use our IRMS instruments, we have collected a range of peer-reviewed publications which cite our products. You can find the citations below and then follow the links to the publishing journal should you wish to download the publication.

If you would like to investigate our available citations in more detail, or email the citation list to yourself or your colleagues then take a look at our full citation database.

No results found.